Trong không gian Oxyz, một véctơ pháp tuyến của mặt phẳng (α): x 1 + y 2 + z - 1 = 1 là
A. n 1 → ( 1 ; 2 ; - 1 ) .
B. n 2 → ( 1 ; 1 / 2 ; - 1 ) .
C. n 3 → ( 1 ; 2 ; 1 ) .
D. n 4 → ( 1 ; 1 / 2 ; 1 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − z + 1 = 0. Tọa độ một
véctơ pháp tuyến của mặt phẳng P là
A. n → = 2 ; − 1 ; 1
B. n → = 2 ; 0 ; 1
C. n → = 2 ; 0 ; − 1
D. n → = 2 ; − 1 ; 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): -2x+y-3z+1=0. Một véctơ pháp tuyến của mặt phẳng (P) là
A. n → = 2 ; - 1 ; - 3
B. n → = 4 ; - 2 ; 6
C. n → = - 2 ; - 1 ; 3
D. n → = - 2 ; 1 ; 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : − 2 x + y − 3 z + 1 = 0. Một véctơ pháp tuyến của mặt phẳng (P) là
A. n → = − 2 ; − 1 ; 3
B. n → = − 2 ; 1 ; 3
C. n → = 2 ; − 1 ; − 3
D. n → = 4 ; − 2 ; 6
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 2 = y - 2 - 2 = z + 1 - 1 và
d 2 : x = t y = 0 z = - t .
Mặt phẳng (P) qua d 1 và tạo với d 2 một góc 45 ° và nhận véctơ n → = 1 ; b ; c làm véc tơ pháp tuyến. xác định tích bc.
A. - 4 hoặc 0
B. 4 hoặc 0
C. - 4
D. 4
Trong không gian Oxyz , véc tơ nào sau đây là véc tơ pháp tuyến n → của mặt phẳng P : 2 x - y + z - 1 = 0
A. n → = 4 ; - 2 ; 2
B. n → = 2 ; 1 ; - 1
C. n → = 4 ; - 4 ; 2
D. n → = 4 ; 4 ; 2
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;-7;-8), B(2;-5;-9) sao cho khoảng cách từ điểm M(7;-1;-2) đến (P) lớn nhất có một véctơ pháp tuyến là n → =(a;b;4). Giá trị của tổng a+b là
A. -1.
B. 3
C. 6
D. 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 = y + 1 2 = z - 2 1 và mặt phẳng P : 2 x - y - 2 z - 2 = 0 . (Q) là mặt phẳng chứa d và tạo với mặt phẳng (P) một góc nhỏ nhất. Gọi n Q → a ; b ; 1 là một vecto pháp tuyến của (Q). Đẳng thức nào đúng?
A. a - b = - 1
B. a + b = - 2
C. a - b = 1
D. a + b = 0