Trong không gian Oxyz, đường thẳng Δ qua điểm A(2;1;5) và song song với mặt phẳng (P):3x-y-z+3=0 sao cho khoảng cách từ điểm M(1;2;−1) đến đường thẳng Δ nhỏ nhất, biết u ⇀ a ; 1 ; b là một véctơ chỉ phương của đường thẳng Δ. Giá trị của a+b bằng
A. - 81 13
B. - 9 4
C. 9 4
D. 81 13
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( α ) :x+y-z+1=0 và đường thẳng d: x - 1 1 = y - 2 2 = z - 3 3 . Đường thẳng Δ qua điểm A(1;0;2) và có véctơ chỉ phương u → (a;b;1), cách đường thẳng d một khoảng bằng
A. 3 3
B. 3
C. 2 2
D. 2
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 1 : x - 1 2 = y + 1 1 = z - 2 ; x = 3 y = 1 - 3 t z = 4 t .Đường thẳng d có véctơ chỉ phương u ⇀ = a ; b ; - 2 cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T = a + b
A. T = 15
B. T = 8
C. T = - 7
D. T = 13
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 2 : x - 1 2 = y + 1 1 = z - 2 ; d 3 : x = 3 y = 1 - 3 t z = 4 t . Đường thẳng d có véctơ chỉ phương u → (a;b;-2) cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T=a+b.
A. T = 15
B. T = 8
C. T = -7
D. T = 13
Trong không gian với hệ tọa độ Oxyz, cho bốn đường thẳng có phương trình d 1 : x - 1 1 = y - 2 2 = z - 2 , d 2 : x - 2 2 = y - 2 4 = z - 4 ; d 3 : x 2 = y 1 = z - 1 1 , d 4 : x - 2 2 = y 2 = z - 1 - 1 . Biết rằng đường thẳng Δ có véctơ chỉ phương u → (2;b;c)cắt cả bốn đường thẳng đã cho. Giá trị của biểu thức 2a+3b bằng
A. 5.
B. -1.
C. - 3 2 .
D. - 1 2 .
Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng d: x = 1 + t y = 2 - 3 t z = - 1 + t là
A. u 1 → (1;2;-1).
B. u 2 → (1;2;1).
C. u 3 → (1;3;1).
D. u 4 → (1;-3;1).
Trong không gian Oxyz, cho tam giác ABC với A(2;3;3), đường trung tuyến kẻ từ đỉnh B là x - 3 - 1 = y - 3 2 = z - 2 - 1 , phương trình đường phân giác trong góc C là x - 2 2 = y - 4 - 1 = z - 2 - 1 . Đường thẳng AB có một véctơ chỉ phương là
A. u 1 → 0 ; 1 ; - 1
B. u 2 → 2 ; 1 ; - 1
C. u 3 → 1 ; 2 ; 1
D. u 4 → 1 ; - 1 ; 0
Trong không gian Oxyz, cho đường thẳng Δ : x = 1 + 3 t , y = 2 t , z = 3 + t (t∈R). Một vectơ chỉ phương của Δ có tọa độ là
A. (-3;-2;-1).
B. (1;2;3).
C. (3;2;1).
D. (1;0;3).
Trong không gian Oxyz cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Biết rằng u → = m ; n ; − 1 là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị của biểu thức T = m 2 + n 2
A. T = 1
B. T = 5
C. T = 2
D. T = 10
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5