Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d : x + 1 2 = y − 5 2 = z − 1 . Tìm vectơ chỉ phương u → của đường thẳng Δ đi qua A và vuông góc với d đồng thời cách B một khoảng lớn nhất.
A. u → = 4 ; − 3 ; 2 .
B. u → = 2 ; 0 ; − 4 .
C. u → = 2 ; 2 ; − 1 .
D. u → = 1 ; 0 ; 2 .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z − 1 . Gọi là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = a ; 1 ; b là một vectơ chỉ phương của Δ . Tính tổng S = a + b
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian Oxyz, đường thẳng d song song với đường thẳng Δ: x = - 2 + t y = - 1 - 2 t z = 3 + t , có vec tơ chỉ phương là
A. u → = ( - 2 ; - 1 ; 3 ) .
B. u → = ( 1 ; - 2 ; 1 )
C. u → = ( 0 ; - 2 ; 3 )
D. u → = ( - 1 ; - 3 ; 4 )
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : 2 x − 3 y + z + 2 = 0 . Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng Δ vuông góc với mặt phẳng (P)?
A. u → = 2 ; 1 ; − 3
B. u → = 2 ; 1 ; − 3
C. u → = 3 ; 2 ; 0
D. u → = 2 ; − 3 ; 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian Oxyz, cho hai điểm M − 2 ; − 2 ; 1 , A 1 ; 2 ; − 3 và đường thẳng d : x + 1 2 = y − 5 2 = z − 1 . Tìm vectơ chỉ phương u → của đường thẳng Δ đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng nhỏ nhất
A. u → = 2 ; 2 ; − 1
B. u → = 3 ; 4 ; − 4
C. u → = 2 ; 1 ; 6
D. u → = 1 ; 0 ; 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng x = 1 + t y = 2 + t z = 3 . Gọi ∆ là đường thẳng đi qua A ( 1 ; 2 ; 3 ) và có vectơ chỉ phương u ⇀ = ( 0 ; - 7 ; - 1 ) . Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A. d : x = 1 + 5 t y = 2 - 2 t z = 3 - t
B. d : x = 1 + 6 t y = 2 + 11 t z = 3 + 8 t
C. d : x = - 4 + 5 t y = - 10 + 12 t z = - 2 + t
D. d : x = - 4 + 5 t y = - 10 + 12 t z = 2 + t
Trong không gian Oxyz, cho đường thẳng ∆ có phương trình chính tắc x + 1 - 3 = y - 2 2 = z + 1 1 . Tọa độ một vectơ chỉ phương của ∆ là:
A. 3 ; - 2 ; - 1
B. - 3 ; 2 ; 0
C. - 1 ; 2 ; - 1
D. 1 ; - 1 ; 1