Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 1 : x - 1 2 = y + 1 1 = z - 2 ; x = 3 y = 1 - 3 t z = 4 t .Đường thẳng d có véctơ chỉ phương u ⇀ = a ; b ; - 2 cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T = a + b
A. T = 15
B. T = 8
C. T = - 7
D. T = 13
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 2 : x - 1 2 = y + 1 1 = z - 2 ; d 3 : x = 3 y = 1 - 3 t z = 4 t . Đường thẳng d có véctơ chỉ phương u → (a;b;-2) cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T=a+b.
A. T = 15
B. T = 8
C. T = -7
D. T = 13
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của đường thẳng △ đi qua A và vuông góc với d đồng thời cách B một khoảng lớn nhất
A. u → = 4 ; - 3 ; 2
B. u → = 2 ; 0 ; - 4
C. u → = 2 ; 2 ; - 1
D. u → = 1 ; 0 ; 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;1), B(1;2;-3) và đường thẳng d : x + 1 2 = y − 5 2 = z − 1 . Tìm vectơ chỉ phương u → của đường thẳng Δ đi qua A và vuông góc với d đồng thời cách B một khoảng lớn nhất.
A. u → = 4 ; − 3 ; 2 .
B. u → = 2 ; 0 ; − 4 .
C. u → = 2 ; 2 ; − 1 .
D. u → = 1 ; 0 ; 2 .
Trong không gian Oxyz, đường thẳng Δ qua điểm A(2;1;5) và song song với mặt phẳng (P):3x-y-z+3=0 sao cho khoảng cách từ điểm M(1;2;−1) đến đường thẳng Δ nhỏ nhất, biết u ⇀ a ; 1 ; b là một véctơ chỉ phương của đường thẳng Δ. Giá trị của a+b bằng
A. - 81 13
B. - 9 4
C. 9 4
D. 81 13
Trong không gian Oxyz cho hai điểm M - 2 ; - 2 ; 1 , A 1 ; 2 ; - 3 và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm véctơ chỉ phương u → của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất
A. u → = 4 ; - 5 ; - 2 .
B. u → = 1 ; 0 ; 2 .
C. u → = 8 ; - 7 ; 2 ) .
D. u → = 1 ; 1 ; - 4
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d đi qua điểm M(3;3;-2) và có véctơ chỉ phương u → = 1 ; 3 ; 1 . Phương trình của d là
A. x + 3 1 = y + 3 3 = z - 2 1 .
B. x - 3 1 = y - 3 3 = z + 2 1 .
C. x - 1 3 = y - 3 3 = z - 1 - 2 .
D. x + 1 3 = y + 3 3 = z + 1 - 2 .
Trong không gian Oxyz cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Biết rằng u → = m ; n ; − 1 là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị của biểu thức T = m 2 + n 2
A. T = 1
B. T = 5
C. T = 2
D. T = 10
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( α ) :x+y-z+1=0 và đường thẳng d: x - 1 1 = y - 2 2 = z - 3 3 . Đường thẳng Δ qua điểm A(1;0;2) và có véctơ chỉ phương u → (a;b;1), cách đường thẳng d một khoảng bằng
A. 3 3
B. 3
C. 2 2
D. 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y - 4 z = 0 , đường thẳng d : x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vecto chỉ phương của đường thẳng ∆ . Tính b+c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4