Trong không gian Oxyz cho một vecto a → tùy ý khác vecto 0 → . Gọi α , β , γ là ba góc tạo bởi ba vecto đơn vị i → , j → , k → trên ba trục Ox, Oy, Oz và vecto a → . Chứng minh rằng: cos 2 α + cos 2 β + cos 2 γ = 1
Trong không gian Oxyz với i → , j → , k → lần lượt là các vecto đơn vị trên các trục Ox, Oy, Oz Tính tọa độ của vecto i → + j → - k →
Trong không gian với hệ trục tọa độ Oxyz, các véctơ đơn vị trên các trục Ox, Oy, Oz lần lượt là i → , j → , k → , cho điểm M(2;-1;1). Khẳng định nào sau đây là đúng?
Trong không gian Oxyz, cho các vecto a → = ( m ; 1 ; 0 ) , b → = ( 2 ; m - 1 ; 1 ) , c → = ( 1 ; m + 1 ; 1 ) . Tìm m để ba vecto a → , b → , c → đồng phẳng
A. m= - 2
B. m = 3 2
C. m = - 1
D. m = - 1 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
Cho các vecto i → , j → , k → không đồng phẳng. Xét các vecto u → = 2 i → - j → + k → , v → = i → - 2 j → - k → , w → = x i → + 3 j → + 2 k → . Tìm x sao cho ba vecto u → , v → , w → đồng phẳng
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;5). Số mặt phẳng đi qua M và cắt các trục Ox, Oy, Oz tại A, B, C sao cho OA = OB = OC (A, B, C không trùng với gốc tọa độ O) là:
A. 8
B. 3
C. 4
D. 1
Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;-2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC
A. 6x - 3y -2z - 6 = 0
B. x - 2y + 3z + 14 = 0
C. x 1 + y - 2 + z 3 = 3
D. x - 2y + 3z - 14 = 0
Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;2) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 2x + 2y + z - 8 = 0
B. 2x + 2y + z + 8 = 0
C. x 1 + y 2 + z 2 = 1
D. x + 2y + 2z - 9 = 0