Trong không gian Oxyz cho ba vecto a → = (2; −1; 2), b → = (3; 0; 1), c → = (−4; 1; −1). Tìm tọa độ của các vecto m → và n → biết rằng: m → = 3 a → − 2 b → + c →
Trong không gian Oxyz cho ba vecto a → = (2; −1; 2), b → = (3; 0; 1), c → = (−4; 1; −1). Tìm tọa độ của các vecto m → và n → biết rằng: n → = 2 a → + b → + 4 c →
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Trong không gian Oxyz cho ba điểm A(2; -1; 3), B(4; 0; 1), C(-10; 5; 3). Hãy tìm tọa độ một vecto pháp tuyến của mặt phẳng (ABC).
Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto làm vectơ chỉ phương và song song với mặt phẳng (P): 2x+y+z=0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:
A. 15
B. 13
C. 16
D. 14
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; -2; -1), B (-2,-4,3), C (1;3;-1) và mặt phẳng (P): x + y -2z – 3 = 0. Tìm điểm M ∈ (P) sao cho M A → + M B → + 2 M C → đạt giá trị nhỏ nhất.
A . M 1 2 ; 1 2 ; - 1
B . M - 1 2 ; - 1 2 ; 1
C . M 2 ; 2 ; - 4
D . M - 2 ; - 2 ; 4
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;-7;-8), B(2;-5;-9) sao cho khoảng cách từ điểm M(7;-1;-2) đến (P) lớn nhất có một vecto pháp tuyến là n → = ( a ; b ; 4 ) . Giá trị của tổng a + b là
A. 2
B. -1
C. 6
D. 3
Trong không gian với hệ trục tọa độ Oxyz cho A (1; 2; ‒1), B (‒2; 1; 0). Điểm M (a; b; c) thuộc mặt phẳng sao cho . Khi đó giá trị của a bằng?