Trong không gian Oxyz, cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Đường thẳng AB có vecto chỉ phương là :
A. u 3 → 2 ; 1 ; − 2
B. u 2 → 1 ; − 1 ; 0
C. u 4 → 0 ; 1 ; − 1
D. u 1 → 1 ; 2 ; 1
Trong không gian Oxyz, cho tam giác ABC với A(2;3;3), đường trung tuyến kẻ từ đỉnh B là x - 3 - 1 = y - 3 2 = z - 2 - 1 , phương trình đường phân giác trong góc C là x - 2 2 = y - 4 - 1 = z - 2 - 1 . Đường thẳng AB có một véctơ chỉ phương là
A. u 1 → 0 ; 1 ; - 1
B. u 2 → 2 ; 1 ; - 1
C. u 3 → 1 ; 2 ; 1
D. u 4 → 1 ; - 1 ; 0
Trong không gian Oxyz, cho tam giác ABC có A(2;3;3), phương trình đường trung tuyến kẻ từ B là x - 3 - 1 = y - 3 2 = z - 2 - 1 , phương trình đường phân giác trong của góc C là x - 2 2 = y - 4 - 1 = z - 2 - 1 . Đường thẳng BC có một vectơ chỉ phương là
A. u → = 2 ; 1 ; - 1
B. u → = 1 ; 1 ; 0
C. u → = 1 ; - 1 ; 0
D. u → = 1 ; 2 ; 1
Trong không gian Oxyz cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Biết rằng u → = m ; n ; − 1 là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị của biểu thức T = m 2 + n 2
A. T = 1
B. T = 5
C. T = 2
D. T = 10
Trong không gian O x y z , cho tam giác A B C có A 2 ; 3 ; 3 , phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Đường thẳng B C có một vectơ chỉ phương là
A. u → = 2 ; 1 ; − 1 .
B. u → = 1 ; 1 ; 0 .
C. u → = 1 ; − 1 ; 0 .
D. u → = 1 ; 2 ; 1 .
Trong không gian Oxyz, cho các điểm A(1; –1;1); B(–1;2;3) và đường thẳng d: x + 1 - 2 = y - 2 1 = z - 3 3 . Đường thẳng ∆ đi qua điểm A, vuông góc với hai đường thẳng AB và d có phương trình là:
A. x - 1 2 = y + 1 4 = z - 1 7
B. x - 1 7 = y - 1 2 = z - 1 4
C. x - 1 2 = y + 1 7 = z - 1 4
D. x - 1 7 = y + 1 2 = z - 1 4
Trong không gian với hệ trục tọa độ Oxyz, cho ba đường thẳng d 1 : x - 3 2 = y + 1 1 = z - 2 - 2 , d 2 : x + 1 3 = y - 2 = z + 4 - 1 và d 3 : x + 3 4 = y - 2 - 1 = z 6 . Đường thẳng d 3 song song , cắt d 1 và d 2 có phương trình là:
A. △ : x - 3 4 = y + 1 1 = z - 2 6
B. △ : x - 3 - 4 = y + 1 1 = z - 2 - 6
C. △ : x + 1 4 = y - 1 = z - 4 6
D. △ : x - 1 4 = y - 1 = z + 4 6
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 2 và hai đường thẳng d: x - 2 1 = y 2 = z - 1 - 1 ,Δ: x 1 = y 1 = z - 1 - 1 . Phương trình nào dưới đây là phương trình mặt phẳng tiếp xúc với (S) và song song với d và Δ
A. y+z+3 = 0.
B. x+y+1 = 0.
C. x+z-1 = 0.
D. x+z+1 = 0
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 1 : x - 1 2 = y + 1 1 = z - 2 ; x = 3 y = 1 - 3 t z = 4 t .Đường thẳng d có véctơ chỉ phương u ⇀ = a ; b ; - 2 cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T = a + b
A. T = 15
B. T = 8
C. T = - 7
D. T = 13
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 2 : x - 1 2 = y + 1 1 = z - 2 ; d 3 : x = 3 y = 1 - 3 t z = 4 t . Đường thẳng d có véctơ chỉ phương u → (a;b;-2) cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T=a+b.
A. T = 15
B. T = 8
C. T = -7
D. T = 13