tính giá trị của biểu thức
a) \(log_216\) và \(log_32187\)
b) \(log_{10}\dfrac{1}{100}\) và \(log10000\)
c) \(9^{log_312}\) và \(8^{log_25}\)
d) \(\left(\dfrac{1}{25}\right)^{log_5\dfrac{1}{3}}\) và \(\left(\dfrac{1}{4}\right)^{log_23}\)
Cho lim x → 1 f ( x ) - 10 x - 1 = 5 . Giới hạn
lim x → 1 f ( x ) - 10 ( x - 1 ) ( 4 f ( x ) + 9 + 3 ) bằng
tính giá trị của biểu thức
a) \(log_2\dfrac{9}{10}\)+ \(log_330\)
b) \(log_3\dfrac{5}{9}\) - \(2log_3\sqrt{5}\)
c) \(log_2\dfrac{16}{3}+2log_2\sqrt{6}\)
1) cho dãy số có các số hạng đầu là 8; 15;22; 29; 36;.. số hạng tổng quát của dãy số là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2;d=9\). Khi đó số 2018 là số hạng thứ mấy của dãy
3) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=5;q=2\). Số hạng thứ 6 của cấp số nhân là
4) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2;u_2=6\).Công bội của cấp số nhân bằng
Lớp 11 A có 4 tổ; tổ 1 có 9 học sinh; tổ 2 có 8 học sinh; tổ 3 có 9 học sinh và tổ 4 có 10 học sinh. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 1 học sinh làm lớp trưởng?
A. 5760
B. 36
C. 25
D. 35
giải các bất phương trình
a) \(2^{2x-2}\ge8\)
b) \(4^{2x+2}\le16\)
c) \(5^{x-9}>5^2\)
d) \(9^{x+2}< 9\)
e) \(9^{x-1}>9^{x^2-x-9}\)
Một chiếc hộp đựng 8 viên bi màu xanh được đánh số từ 1 đến 8 , 9 viên bi màu đỏ được đánh số từ 1 đến 9 và 10 viên màu vàng được đánh số từ 1 đến 10 . Một người chọn ngẫu nhiên 3 viên bi trong hộp . Tính xác xuất 3 viên vừa khác màu vừa khác số
rút gọn các biểu thức
a) \(log_{a^3}b.log_ba\)
b) \(log_{a^{10}}b^5.log_{b^3}a^9\)
c) \(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}\)
1+2+3+4+ 5+6+7+8+9+10+11+12+13 *12345678910