\(x-1=(3-x)^{2} \Leftrightarrow x-1=9-6x+1\)
\(\Leftrightarrow\)\(x-1-9+6x-1=0\)
\(\Leftrightarrow\)\(7x-11=0\)\(\Leftrightarrow\)\(7x=11\)
\(\Leftrightarrow x= \dfrac{11}{7}\)
\(x-1=(3-x)^{2} \Leftrightarrow x-1=9-6x+1\)
\(\Leftrightarrow\)\(x-1-9+6x-1=0\)
\(\Leftrightarrow\)\(7x-11=0\)\(\Leftrightarrow\)\(7x=11\)
\(\Leftrightarrow x= \dfrac{11}{7}\)
cho A= \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
1, rút gọn A, tìm ĐKXĐ
2, tìm x để A< 1
3 Tìm GTNN khi B= (x-9). A
Cho A= \(\dfrac{\sqrt{x}+4}{{}\sqrt{x}-1}\) và B= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)} -\dfrac{3\sqrt{x}-3}{x-1}\) (đk: x>0,x≠1)
a) Rút gọn P=A.B
b) Tìm x để P(\(\sqrt{x}+1\)) ≤ 6-x
c) Tìm x để P nhận giá trị nguyên
Cho biểu thức
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)-\(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) - \(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x ∈ Z để A nhận giá trị nguyên
f) Tìm GTNN của A
Bài 1: Cho A=\(\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\div\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) (x≥0; x≠9)
a, Rút gọn A
b, Tính A khi \(x=7+4\sqrt{3}\)
c, Tìm x để A=\(\dfrac{3}{5}\)
d, Tìm x để A>1
e, Tìm x∈Z để A∈Z
Cho \(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
a, Rút gọn P.
b, Tìm x để P=\(\sqrt{x}-1\).
c, Tìm xϵZ để PϵZ.
\(Cho:A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(1,\)Rút gọn biểu thức A
\(2,\)Tìm GTLN của A
\(3,\)Tìm \(x\in Q\) để A nhận giá trị nguyên
Tìm x
1) \(\sqrt{\dfrac{3x-1}{x+2}}=2\)
2)\(\sqrt{\dfrac{5x-7}{2x- 1}}=2\)
3)\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
4) \(\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tìm x để A nguyên
c) Tìm x để A<1
Tìm `x >= 0`
\(\dfrac{1}{\sqrt{x}+2}>\dfrac{1}{5}\)
\(\dfrac{2}{\sqrt{x}+3}< \dfrac{1}{2}\)
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}>1\)
\(\dfrac{2\sqrt{x}}{\sqrt{x}+1}< \dfrac{1}{3}\)