Cho hàm số y = − x + 1 2 x − 1 có đồ thị là (C), đường thẳng d : y = x + m . Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 đạt giá trị lớn nhất.
A. m = -1
B. m = -2
C. m = 3
D. m = -5
Cho hàm số y = - x + 1 2 x - 1 có đồ thị (C) đường thẳng A, B Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 lớn nhất
A. -1
B. -2
C. 3
D. -5
Cho hàm số y = x − 2 x − 3 có đồ thị (C). Tìm m để đường thẳng d đi qua A ( 0 ; m ) có hệ góc bằng 2 cắt (C) tại 2 điểm phân biệt có hoành độ dương
A. m ∈ ℝ .
B. 2 3 < m < 7 .
C. m < 2 3 .
D. m > 7 .
Đồ thị hàm số y = a x + b x - 1 cắt trục Oy tại điểm M(0;-1), tiếp tuyến của đồ thị tại M có hệ số góc k = -3. Các giá trị của a, b là
A. a = 1; b = 1
B. a = 2; b = 1
C. a = 1; b = 2
D. a = 2; b = 2
Cho hàm số f ( x ) = x 3 + m x 2 + x + 1 Gọi k là hệ số góc tiếp tuyến của đồ thị hàm số tại M có hoành độ x = 1. Tất cả các giá trị thực của tham số m để thỏa mãn k.f(-1)<0
Có bao nhiêu giá trị nguyên dương của tham số m để trên đồ thị hàm số (Cm): y=1/3 x3+ mx2+(2m-3)m+2019 có hai điểm nằm về hai phía của trục tung mà tiếp tuyến của (Cm) tại hai điểm đó cùng vuông góc với đường thẳng (d): x+2y+6=0?
A. 3
B. 0
C. 2
D. 1
Cho hàm số y = - x 3 + 3 x 2 + ( 2 m - 1 ) x + 2 m - 3 có đồ thị (Cm). Với giá trị nào của tham số m thì tiếp tuyến của hệ số góc lớn nhất của đồ thị (Cm) vuông góc với đường thẳng △ : x - 2 y - 4 = 0 ?
A. m=-2
B. m=-1
C. m=0
D. m=4
Tìm tất cả giá trị thực của tham số m để mọi tiếp tuyến của đồ thị hàm số y = 1 3 x 3 - 2 m x 2 + 4 x - 5 có hệ số góc luôn dương.
A. -1<m<1
B. - 1 ≤ m ≤ 1
C. 0 ≤ m ≤ 2
D. 0<m<2
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất