Cho hàm số y = x 3 - m x + 1 - m có đồ thị C m . Gọi M là điểm có hoành độ bằng 0 và thuộc C m . Tìm tất cả các giá trị thực của tham số m để tiếp tuyến của C m tại M cắt trục hoành tại N sao cho MN = 2 2
A. m ∈ - 1 ; 3 ± 2 2
B. m ∈ - 1 ; 2 ± 3
C. m ∈ 1 ; - 3 ± 2 2
D. m ∈ 1 ; 2 ± 3
Cho hàm số y = x 4 − 2 m + 1 x 2 + m + 2 1 . Gọi A là điểm thuộc đồ thị hàm số (1) có hoành độ x A = 1. Tìm tất cả các giá trị của tham số m để tiếp tuyến với đồ thị hàm số (1) tại A vuông góc với đường thẳng d : y = 1 4 x − 2016
A. m=0
B. m=2
C. m=-1
D. m=1
Cho hàm số y=f(x)(x-1) xác định và liên tục trên R và có đồ thị như hình vẽ dưới đây. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m 2 - m cắt đồ thị hàm số f x x - 1 tại 2 điểm có hoành độ nằm ngoài đoạn [-1;1]
A. m > 0
B. [ m > 1 m < 0
C. m < 1
D. 0 < m < 1
Cho hàm số y = f(x)(x - 1) xác định và liên tục trên ℝ và có đồ thị như hình vẽ dưới đây. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = f x x − 1 cắt đồ thị hàm số tại 2 điểm có hoành độ nằm ngoài đoạn [-1;1]
A. m > 0.
B. m > 1 m < 0 .
C. m < 1.
D. 0 < m < 1.
Cho hàm số y = f(x) thỏa mãn l i m x → - ∞ f x = - 1 và l i m x → + ∞ f x = m Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 1 f x + 2 có duy nhất một tiệm cận ngang.
A. m = -1
B. m = 2
C. m ∈ - 1 ; - 2
D. m ∈ - 1 ; 2
Cho hai hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ bên dưới, trong đó đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị này tiếp xúc với nhau tại điểm có hoành độ là -3 và cắt nhau tại hai điểm nữa có hoành độ lần lượt là -1 và 3. Tìm tập hợp tất cả các giá trị thực của tham số m để bất phương trình f x ≥ g x + m nghiệm đúng với mọi x ∈ - 3 ; 3 .
A. - ∞ ; 12 - 8 3 9 .
B. 12 - 10 3 9 ; + ∞ .
C. - ∞ ; 12 - 10 3 9 .
D. 12 - 8 3 9 ; + ∞ .
Cho hàm số y = cos x + m sin 2 x ( C ) (m là tham số). Tìm tất cả các giá trị thực của tham số m để tiếp tuyến của (C) tại điểm có hoành độ x = π , x = π 3 song song hoặc trùng nhau
A . m = - 3 6
B . m = - 2 3 3
C . m = 3
D . m = - 2 3
Cho hàm số f ( x ) = ( m - 1 ) x 3 + 2 x - m + 1 Gọi S là tập chứa tất cả các giá trị thực của tham số m để hàm số có đạo hàm tại x = 0. Số phần tử của tập S là
A. 0
B. 1
C. 2
D. 3
Cho hàm số f x = x 4 - 4 x 2 + 6 x + 1 Hệ số góc k của tiếp tuyến của đồ thị hàm số f’(x) tại điểm có hoành độ x = 1 là
A. k = -4
B. k = -8
C. k = 4
D. k = 20