Cho hàm số f ( x ) = x 3 + m x 2 + x + 1 Gọi k là hệ số góc tiếp tuyến của đồ thị hàm số tại M có hoành độ x = 1. Tất cả các giá trị thực của tham số m để thỏa mãn k.f(-1)<0
Cho hàm số y = x − 1 x + 1 có đồ thị (C). Gọi (d) là tiếp tuyến của (C) tại điểm có tung độ bằng - 1 . Tìm hệ số góc k của đường thẳng (d).
A. -2
B. 1
C. -1
D. 0
Cho hàm số y = x 2 + x + 1 x . Hệ số góc k của tiếp tuyến của đồ thị hàm số y’ tại điểm x=1 là
A. 3
B. 2
C. 1
D. – 3
Tìm hệ số góc tiếp tuyến k của đồ thị hàm số y = x + 2 1 − x tại giao điểm của nó với trục hoành.
A. k = − 3
B. k = − 1 3
C. k = 1 3
D. k = 3
Cho hàm số =f(x) có đạo hàm liên tục trên khoảng K và có đồ thị là đường cong (C). Viết phương trình tiếp tuyến của (C) tại điểm M(a;f(a)), (aϵ K).
A. y=f’(a)(x-a)-f(a).
B. y=f’(a)(x+a)+f(a).
C. y=f(a)(x-a)+f’(a).
D. y=f’(a)(x-a)+f(a).
Cho hàm số f xác định, có đạo hàm trên R thỏa mãn f2(-x) =(x2+2x+4)f(x+2) và f(x) ≠ 0 , ∀ x ∈ R . Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 0 là
Cho hàm số y=f(x) xác định, có đạo hàm trên R thỏa mãn f 2 ( - x ) = ( x 2 + 2 x + 4 ) f ( x + 2 ) và f ( x ) ≠ 0 , ∀ x ∈ R . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=2 là
A. y=-2x+4.
B. y=2x+4.
C. y=2x.
D. y=4x+4.
Cho hàm số y = f(x). Tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 có hệ số góc là:
A. k = f ' x 0 . x - x 0 + f x 0
B. k = f ' x 0 + f x 0
C. k = f x 0
D. k = f ' x 0
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30