y2 + 3y = x4 + x2 + 18
<=> 4y2 + 12y = 4x4 + 4x2 + 72
<=> 4y2 + 12y + 9 = 4x4 + 4x2 + 1 + 80
<=> (2y + 3)2 = (2x2 + 1)2 = 80
<=> (2x2 + 1 + 2y + 3)(2y + 3 - 2x2 - 1) = 80
<=> (2x2 + 2y + 4)(-2x2 + 2y + 2) = 80
<=> (x2 + y + 2)(-x2 + y + 1) = 20
Lập bảng xét các trường hợp
x2 + y + 2 | 1 | 20 | -20 | -1 | 4 | 5 | -5 | -4 | 2 | 10 | -2 | -10 |
-x2 + y + 1 | 20 | 1 | -1 | -20 | 5 | 4 | -4 | -5 | 10 | 2 | -10 | -2 |
x | | | \(\pm3\) | | | \(\pm3\) | | | 0 | | | 0 | ||||
y | 9 | 9 | -12 | -12 | 3 | 3 | -6 | -6 | | | | | | | | |
Vậy các cặp (x;y) thỏa mãn là (-3 ; 9) ; (3;9) ; (-3 ; -12) ; (3;-12) ; (0;3) ; (0;-6)