Tìm 3 số nguyên dương a; b; c biết:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
Cho 3 số dương a,b,c thỏa mãn: 0\(\le a\le b\le c\le1\)
CMR:\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Giả sử a ; b ; c là các số thỏa mãn a + b + c = 259 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=15\)
Khi đó giá trị của biểu thức \(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\)
các số nguyên dương x;y;z thỏa mãn \(x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
với x;y nguyên dương thỏa mãn \(\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\) và \(\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\) tìm x;y
6. (chuyên Hòa Bình)
Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32
Tìm giá trị nhỏ nhất của \(P=x^2+16y^2+16z^2\)
7. ( chuyên Hoàng Văn Thụ)
Cho hai số thực dương a, b thỏa mãn a+b=4ab
Chứng minh rằng: \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
8. ( tỉnh Vũng Tàu)
Cho các số thực dương x, y thỏa mãn \(x+y\le3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{5xy}+\dfrac{5}{x+2y+5}\)
( câu 8. thử tìm cách khác cách của mình nha các bạn)
Ba số a;b;c khác nhau và khác 0 thỏa mãn \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
giá trị biểu thức \(P=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}=\)
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)