Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. ﴾b khác 2 thì tích b.c > 3 là vô lý﴿.
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
Gọi các số nguyên dương cần tìm là a,b,c,d (\(a,b,c,d>0\))
Giả thiết : \(a+b+c+d=abcdf\)
Không mất tính tổng quát, ta giả sử a là số lớn nhất. Khi đó
\(abcd=a+b+c+d\le4a\Rightarrow bcd\le4\)
Ta có \(4=1.1.4=2.2.1\) . Vì vai trò của b,c,d là như nhau , do đó ta chỉ cần chọn hai trường hợp là b = c = 1, d = 4 suy ra : a+2+4 = 4a => 3a = 6 => a = 2
Trường hợp còn lại : b = c = 2 , d = 1 suy ra a + 4 + 1 = 4a => a = 5/3(loại)
Vậy được các số cần tìm là 2,1,1,4