Gọi ƯCLN của a‐c và b‐c là d
Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2
﴾ p; q là các số nguyên﴿
c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.
Gọi ƯCLN của a‐c và b‐c là d
Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2
﴾ p; q là các số nguyên﴿
c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.
tìm tất cả các bộ 3 số nguyên tố a, b, c đôi một khác nhau thỏa mãn điều kiện
20abc < 30 ( ab + bc + ac ) < 21abc
Câu 1 :tìm x\(\sqrt{x-2\sqrt{3x-9}}\) =\(2\sqrt{x-3}\)
câu 2:chờ a,b,c,d là các số nguyên thỏa mãn a<b<c<d và a+b=b+c .CMR a^2 +b^2 +c^2+d^2 là tổng 3 số chính phương
câu 3 :cho tam giác vuông ABC ( A=90) ,AD là phân giác của A ( D thuộc BV chứng minh \(\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{2}\)
câu4 :Tìm tất cả số tự nhiên sao cho \(n^2+17\) là số chính phương
Câu 5: cho 3 số dương x,y,z tổng =1 ,CMR : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>hoặc=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) làm giúp mình cái ,THANK YOU SO MUCH ,làm đc bão like
Bài 1 : Cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1
CM : Q=\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là 1 số hữu tỉ
Cho a, b, b là ba số thực dương thỏa mãn : \(a+b+c+\sqrt{abc}=4\)
Tính giá trị của biểu thức:
\(A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
1) Cho 2 số dương x;y thay đổi thỏa mãn xy=2.
Tìm GTNN của M=\(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
2) Cho a,b là các số dương thay đổi thỏa mãn a+b=2.
Tìm GTNN của Q=\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
mọi người giúp mình 2 bài này với, xin cảm ơn
Cho 3 số thực dương a,b,c thỏa mãn : \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) . CMR :
\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
Cho a,b,c là 3 số hữu tỉ thỏa mãn điều kiện: ab+bc+ac=1
Chứng minh: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là 1 số hữu tỉ
a. tìm các nghiệm nguyên của phương trình \(x^2+xy+y^2=x^2y^2\)
b. cho a,b,c là các số thực không âm thảo mãn : a+b+c=1
cmr: \(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\)
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)