Cắt một hình nón bằng một mặt phẳng qua trục của nó được thiết diện là tam giác đểu cạnh bằng a. Tính thể tích V của khối nón theo A
A. V = π a 3 3 12
B. V = π a 3 3 24
C. V = π a 3 3 6
D. V = π a 3 3 3
Thiết diện qua trục của một hình nón tròn xoay là tam giác đều, cạnh a. Tính tỉ số thể tích của hình cầu ngoại tiếp và hình cầu nội tiếp hình nón
A. 2
B. 2
C. 4
D. 8
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác đều cạnh là 2 sin x
A. V = 3
B. V = 3 π
C. V = - 2 π 3
D. V = 2 3
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác đều cạnh là 2 s i n x
A. V = 3
B. V = 3 π
C. V = 2 π 3
D. V = 2 3
Cho khối nón cụt có R, r lần lượt là bán kính hai đáy và h = 3 là chiều cao. Biết thể tích khối nón cụt là V = π tìm giá trị lớn nhất của biểu thức P = R + 2r.
A. 2 3
B. 3
C. 3 3
D. 2
Biết rằng thiết diện qua trục của một hình nón là tam giác đều có diện tích bằng a 2 3 . Tính thể tích V của khối nón đã cho
A. V = π a 3 3 2
B. V = π a 3 6 6
C. V = π a 3 3 3
D. V = π a 3 3 6
Thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ π ) là một tam giác đều cạnh
A. V = 3
B. V = 3 π
C. 2 3
D. 2 π 3
Một hình nón có thiết diện qua trục là tam giác đều cạnh bằng 2a . Tính thể tích của khối nón được tạo nên từ hình nón đó.
A. 1 3 π a 3 3
B. π a 3 3
C. 1 4 π a 3 3
D. 1 12 π a 3 3
Cắt hình nón bởi một mặt phẳng qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng a 6 . Tính thể tích V của khối nón đó
A. V = π a 3 6 6
B. V = π a 3 6 3
C. V = π a 3 6 2
D. V = π a 3 6 4