Đáp án D
Diện tích tam giác bằng 2 sin x 2 3 4 = 3 sin x .
Suy ra thể tích cần tích bằng V = ∫ 0 π 3 sin x d x = - 3 cos x 0 π = 2 3 .
Đáp án D
Diện tích tam giác bằng 2 sin x 2 3 4 = 3 sin x .
Suy ra thể tích cần tích bằng V = ∫ 0 π 3 sin x d x = - 3 cos x 0 π = 2 3 .
Thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ π ) là một tam giác đều cạnh
A. V = 3
B. V = 3 π
C. 2 3
D. 2 π 3
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác đều cạnh là 2 s i n x
A. V = 3
B. V = 3 π
C. V = 2 π 3
D. V = 2 3
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 ; x = π , biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ∈ 0 ; π là một tam giác đều có cạnh là 2 sin x
A. 3
B. π 3
C. 2 3
D. 2 π
Cho một vật thể nằm giữa hai mặt phẳng x=0, x = π biết rằng mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π cắt vật thể theo thiết diện là một tam giác đều cạnh 2 sin x Thể tích của vật thể đó là
A. 3 π 2
B. 2 3
C. 3 2
D. 2 π 3
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0 , x = π . Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác vuông cân có cạnh huyền bằng sin x + 2
A. 7 π 6 + 2
B. 7 π 6 + 1
C. 9 π 8 + 2
D. 9 π 8 + 1
Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = - 1 , x = 1 . Biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( - 1 ≤ x ≤ 1 ) là một hình vuông cạnh 2 1 - x 2
A. V = 13 2
B. V = 16 2
C. V = 15 4
D. V = 14 3
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=0 và x=3, biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một hình chữ nhật có hai kích thước là x và 2 9 − x 2 .
A. V = 4 π ∫ 0 3 9 − x 2 d x
B. V = ∫ 0 3 2 x 9 − x 2 d x
C. V = 2 ∫ 0 3 x + 2 9 − x 2 d x
D. V = ∫ 0 3 x + 2 9 − x 2 d x
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=0 và x=3, biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một hình chữ nhật có hai kích thước là x và 2 9 − x 2 .
A. V = 4 π ∫ 0 3 9 − x 2 d x
B. V = ∫ 0 3 2 x 9 − x 2 d x
C. V = 2 ∫ 0 3 x + 2 9 − x 2 d x
D. V = ∫ 0 3 x + 2 9 − x 2 d x
Cho phần vật thể (T) giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = 2 Cắt phần vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ 0 ≤ x ≤ 2 , ta được thiết diện là một tam giác đều có độ dài cạnh bằng x 2 - x . Tính thể tích V của phần vật thể (T).
A. V = 4 3 .
B. V = 3 3 .
C. V = 4 3 .
D. V = 3 .