phương trình \(\sqrt{x-5}=\sqrt{3-x}\) có bao nhiêu nghiệm
phương trình \(\sqrt{4x-8}-2\sqrt{\dfrac{x-2}{4}}=3\) có nghiệm là
tìm nghiệm
a)\(\sqrt{5x-1}\)=8
b)tập nghiệm của bất phương trình\(\sqrt{5x-2}\)<4
c)\(\sqrt{x-2x+1}-\sqrt{x^2-4x+4}=x-3\)
Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:
a) 3x – y = 2; b) x + 5y = 3;
c) 4x – 3y = -1; d) x + 5y = 0 ;
e) 4x + 0y = -2 ; f) 0x + 2y = 5.
Phương pháp 7. Nhẩm nghiệm và biến đổi về phương trình tích, có sử dụng phép nhân
liên hợp
a \(\sqrt{x-2}+\sqrt{x+1}+\sqrt{2x+3}=6\)
b \(x^2+5\sqrt{x-3}=21\)
c \(x^2+4x+\sqrt{4x+5}+\sqrt{x+3}-10=0\)
a, giải phương trình sau: \(4x^3+4x^2-5x+9=4\sqrt[4]{16x+8}\)
b, chứng minh phương trình sau vô nghiệm trên tập hợp số thực:
\(9x^4+x\left(12x^2+6x-1\right)+\left(x+1\right)\left(9x^2+12x+5\right)+1=0\)
*1/ Cho x,y,z là các số thực thoả mãn điều kiện \(\frac{3}{2}x^2+y^2+z^2+yz=1\)GTNN của biểu thức A=x+y+z
*2/ Xác định tập nghiệm của phương trình sau: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
*3/ Nghiệm nguyên nhỏ nhất của bất phương trình \(\sqrt{x+1}< x-3\)
*4/ Cho biểu thức \(P=\sqrt{\frac{\left(x^3-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)Tập hợp các giá trị của x để biểu thức P có giá trị nguyên là S={...}
*5/ Giải phương trình \(x^2+1=2\sqrt{2x-1}\)
Mọi người giải giúp dùm e ạ!!! Thanks! ^_^
Phương trình \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\) có tập nghiệm S là ?
1 Giaỉ các phương trình sau ;
a)\(\sqrt[]{4x^2-4x+9=3}\) b) \(\sqrt[]{16x=8}\)
c) \(\sqrt{2x}=\sqrt{5}\) d) \(\sqrt[]{3x-1}=4\)
e)\(\sqrt[]{4\left(1-x\right)^2}-6=0\) g) \(\sqrt[]{x^2-x+16=4}\)
mn giúp e nha , e đang cần gấp ^^
Bài 1: Giải phương trình
a) \(\sqrt{x^2+4x+4}=2\)
b) \(\sqrt{4x-8}-7\sqrt{\dfrac{x-2}{49}}=5\)
Bài 2: Trong mặt phẳng tọa độ Oxy:
a) Vẽ đồ thị (d₁) của hàm số y = \(-\dfrac{1}{2}x+\dfrac{3}{2}\)
b) Gọi A và B là giao điểm của đồ thị (d₁) với các trục tọa độ. Tính diện tích ∆OAB (với O là gốc tọa độ)
Bài 3: Rút gọn
A= \(\dfrac{2\sqrt{x}-4}{3\sqrt{x}-4}+\dfrac{x+22\sqrt{x}-32}{3x-10\sqrt{x}+8}+\dfrac{4+2\sqrt{x}}{\sqrt{x}-2}\:\left(x\:\ge0;\:x\ne4;\:x\ne\dfrac{16}{9}\right)\)