ΔBDE vuông tại D
gọi F là trung điểm của BE
⇒DF = \(\dfrac{1}{2}\) BE =BF
ΔBDF có BF = FD → ΔBDF cân tại F
→\(\widehat{B}\)\(_1\) = \(\widehat{D}\)\(_2\)
lại có \(\widehat{B}\)\(_1\)= \(\widehat{B}\)\(_2\)
⇒\(\widehat{B}\)\(_2\) = \(\widehat{D}\)\(_2\)
mà 2 góc này ở vị trí so le trong ➜ AB // DF
⇒ \(\widehat{B}\) = \(\widehat{F}\)\(_1\) ( 2 góc đồng vị )
mặt khác \(\widehat{B}\) = \(\widehat{C}\)\(_1\) ( ΔABC cân tại A )
⇒ \(\widehat{F}\) \(_1\) = \(\widehat{C}\)\(_1\) ⇒ ΔCDF cân tại D ⇒ DF = DC
mà DF = \(\dfrac{1}{2}\) BE
⇒ DC = \(\dfrac{1}{2}\) BE ⇒ BE = 2DC ( điều phải chứng minh )