Ta có:\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\Leftrightarrow\sqrt{ab}\ge0\) (luôn đúng do a,b≥0)
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(< =>a+2\sqrt{ab}+b\ge a+b\)
\(< =>2\sqrt{ab}\ge0\) (luôn đúng \(\forall a,b\ge0\))
dấu"=" xảy ra<=>a=b=0
Ta có: \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\)(luôn đúng