\(=3-\sqrt{2}+3+\sqrt{2}=6\)
\(\sqrt{11-6\sqrt{2}}+3+\sqrt{2}\\=\sqrt{9-2.3\sqrt{2}+2}+3+\sqrt{2}\\ =\sqrt{\left(3-\sqrt{2}\right)^2}+3+\sqrt{2}\\ =3-\sqrt{2}+3+\sqrt{2}\\ =6 \)
\(=3-\sqrt{2}+3+\sqrt{2}=6\)
\(\sqrt{11-6\sqrt{2}}+3+\sqrt{2}\\=\sqrt{9-2.3\sqrt{2}+2}+3+\sqrt{2}\\ =\sqrt{\left(3-\sqrt{2}\right)^2}+3+\sqrt{2}\\ =3-\sqrt{2}+3+\sqrt{2}\\ =6 \)
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
a) 11+6\(\sqrt{2}\) = \(\left(3+\sqrt{2}\right)^2\)
b) 8-2\(\sqrt{7}\)=\(\left(\sqrt{7}-1\right)^2\)
c)\(\sqrt{11+6\sqrt{2}}=\sqrt{11-6\sqrt{2}}=6\)
d) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=-2\)
Rút gọn biểu thức
1) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
2) (\(\sqrt{3}\) - 2)\(\sqrt{7+4\sqrt{3}}\)
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
cần gấp
Thực hiện phép tính (rút gọn biểu thức)
a) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
c) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
Giải phương trình:
e) \(\sqrt{x^2}=\left|-8\right|\)
Tính:
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right).\)
2)\(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
3)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4)\(\sqrt{2\sqrt{3}-4}+\sqrt{2\sqrt{3}+4}\)
5)\(\sqrt{4\sqrt{6}+11}-\sqrt{11-4\sqrt{6}}\)
6)\(\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\)
7)\(\sqrt{5-2\sqrt{7-2\sqrt{6}}}\)
AI ĐÓ TỐT BỤNG GIÚP MK ZỚI:((
giải hộ mik
a)\(\sqrt{11+6\sqrt{2}}-\left(3+\sqrt{2}\right)\)
b)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Rút gọn:
\(A=\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(B=\frac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)