\(=\dfrac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(=\dfrac{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
Rút gọn:
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
Rút gọn: (2 - \(\sqrt{3}\) )\(\sqrt{26+15\sqrt{3}}\) - (2 + \(\sqrt{3}\) )\(\sqrt{26-15\sqrt{3}}\)
Rút gọn: \(\left(\sqrt{3-2\sqrt{\sqrt{3}-1}}+\dfrac{\sqrt{3}-1}{\sqrt{2}}\right).\sqrt{\sqrt{3}-1}\)
Rút gọn
C = 21(\(\sqrt{2+\sqrt{3}}\) -\(\sqrt{6-2\sqrt{5}}\))2-6(\(\sqrt{2-\sqrt{3}}\) +\(\sqrt{\left(3+\sqrt{5}\right)^2}\))
Rút gọn
\(\sqrt{2+\sqrt{3}}+\sqrt{2+\sqrt{2+\sqrt{3}}}+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2\sqrt{2}}{\sqrt{2}+1}-(3+\sqrt{3}-2\sqrt{2})\)
RÚT GỌN HỘ MÌNH NHÉ
Rút gọn;
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2}+\sqrt{3}}.\sqrt{2-\sqrt{2}+\sqrt{3}}\)
rút gọn biểu thức: A= \(\dfrac{\sqrt[3]{2}+\sqrt{7+2\sqrt{10}}+\sqrt[3]{3\sqrt[3]{4}-3\sqrt[3]{2}-1}}{\sqrt{5}+\sqrt{2}+1}\)
Rút gọn: \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Rút gọn biểu thức :
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)