Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phuong Anh Do

Rút gọn và tính giá trị biểu thức :  

 \(N=\) \(\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)\(với\)\(a=\dfrac{1}{2};b=-3\)

 

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 13:11

\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)=\left(a-3b-a-3b\right)\left(a-3b+a+3b\right)-\left(ab-2a-b+2\right)=\left(-6b\right).2a-ab+2a+b-2=2a+b-13ab-2\)

Thay \(a=\dfrac{1}{2};b=-3\) vào N ta được: \(N=2a+b-13ab-2=2.\dfrac{1}{2}-3-13.\dfrac{1}{2}.\left(-3\right)-2=\dfrac{31}{2}\)

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 13:28

Ta có: \(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)-1-3-2\)

\(=\dfrac{27}{2}\)

Tô Mì
20 tháng 8 2021 lúc 14:27

\(N=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

Thay \(a=\dfrac{1}{2};b=-3\) vào bt N được

\(N=\left(-13\right)\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)

\(=\dfrac{31}{2}\)

Vậy: Giá trị của N tại \(a=\dfrac{1}{2};b=-3\) là \(\dfrac{31}{2}\)


Các câu hỏi tương tự
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Zi Heo
Xem chi tiết
Kim Tuyến
Xem chi tiết
nguyenthi Kieutrang
Xem chi tiết