Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Tuyến

Cho biểu thức C=\(\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\) Với \(x\ne\pm1\)

a, Rút gọn C

b, Tính giá trị của C khi x=\(-1\dfrac{1}{2}\)

c, Tìm x biết C=\(\dfrac{1}{2}\)

d, Chứng minh 2C<1

Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 23:43

a) Ta có: \(C=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)

\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right)\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{\left(1+x\right)}-x\right)\right]\)

\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x^2+1\right)}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)

\(=\dfrac{x}{x^2+1}\)

b) Thay \(x=-\dfrac{3}{2}\) vào C, ta được:

\(C=\dfrac{-3}{2}:\left(\dfrac{9}{4}+1\right)=\dfrac{-3}{2}:\dfrac{13}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{13}=\dfrac{-6}{13}\)

c) Ta có: \(C=\dfrac{1}{2}\)

nên \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)(Loại)


Các câu hỏi tương tự
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Zi Heo
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết