Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Tuyến

Cho S=\(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

a, Rút gọn biểu thức S

b, Tìm x để giá trị của S=-1

Khánh Huyền
9 tháng 6 2021 lúc 9:06

a)

\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

\(S=\left(\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\left(\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)

\(S=\dfrac{6-x}{x-6}=-1\)

b) Vì giá trị của biểu thức S không phụ thuộc vào giá trị của biến nên với mọi giá trị của x ta đều có giá trị của S là - 1.

 


Các câu hỏi tương tự
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Zi Heo
Xem chi tiết
Zi Heo
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết