\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)\)
Mà ta có:
\(\left\{{}\begin{matrix}x^2-2x+3=\left(x-1\right)^2+2>0\\y^2+6y+12=\left(y+3\right)^2+3>0\end{matrix}\right.\)
\(\Rightarrow\left(x^2-2x+3\right)\left(y^2+6x+12\right)>0\)
Vậy P > 0