Đặt \(z=-\frac{1+xy}{x+y}\) ta có \(xy+yz+zx=-1\) và BĐT trở thành
\(x^2+y^2+z^2\ge2\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+zx\right)\Leftrightarrow\left(x+y+z\right)^2\ge0\) ( luôn đúng )
Vậy BĐT được chứng minh.
Trần Hải An sai nhé: ne6u1xy+yz+zx<0 thì nhân vào 2 phải đổi dấu BĐT