Ta có : \(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1+5\left(x+y+1\right)+y^2+4=0\)
\(\Leftrightarrow\left(x+y+1\right)^2+5\left(x+y+1\right)+y^2+4=0\)
Đặt t = x+y+1
Suy ra \(t^2+5t+y^2+4=0\)
Xét \(\Delta=25-4\left(4+y^2\right)=9-4y^2\) . Để pt có nghiệm thì \(\Delta\ge0\Rightarrow y^2\le\frac{9}{4}\)
Giả sử pt có hai nghiệm : t1 < t2 . Do đó GTNN của A xảy ra tại t1
Khi đó : \(t_1=\frac{-5-\sqrt{9-4y^2}}{2}\ge\frac{-5-\sqrt{9}}{2}=-4\)
Suy ra \(A\ge-4\) . Vậy Min A = -4 <=> y = 0 => x = -5