Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

\(\left\{{}\begin{matrix}2x^2+y^2+5xy-y=-2\\x^2-y^2+2xy+x+2y=-4\end{matrix}\right.\)

Nguyễn Việt Lâm
11 tháng 1 2024 lúc 20:50

Trừ vế cho vế:

\(\Rightarrow x^2+2y^2+3xy-x-3y-2=0\)

\(\Leftrightarrow x^2+\left(3y-1\right)x+2y^2-3y-2=0\)

Coi đây là pt bậc 2 ẩn x tham số y

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-3y-2\right)=\left(y+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3y+1-y-3}{2}=-2y-1\\x=\dfrac{-3y+1+y+3}{2}=-y+2\end{matrix}\right.\)

Thế vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}2\left(-2y-1\right)^2+y^2+5y\left(-2y-1\right)-y+2=0\\2\left(-y+2\right)^2+y^2+5y\left(-y+2\right)-y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-y^2+2y+4=0\\-2y^2+y+10=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=1-\sqrt{5}\Rightarrow x=-3+2\sqrt{5}\\y=1+\sqrt{5}\Rightarrow x=-3-2\sqrt{5}\\y=-2\Rightarrow x=4\\y=\dfrac{5}{2}\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)


Các câu hỏi tương tự
Lizy
Xem chi tiết
Lizy
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Lizy
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Mèo Dương
Xem chi tiết