Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

\(\left\{{}\begin{matrix}2x^2+y^2+5xy-y=-2\\x^2-y^2+2xy+x+2y=-4\end{matrix}\right.\)

Lấy pt trên trừ dưới ta được:

\(x^2+2y^2+3xy-x-3y-2=0\)

\(\Leftrightarrow x^2+\left(3y-1\right)x+2y^2-3y-2=0\)

Coi đây là pt bậc 2 ẩn x tham số y, ta có:

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-3y-2\right)=\left(y+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3y+1+y+3}{2}=-y+2\\x=\dfrac{-3y+1-y-3}{2}=-2y-1\end{matrix}\right.\)

Thế vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}2\left(-y+2\right)^2+y^2+5y\left(-y+2\right)-y+2=0\\2\left(-2y-1\right)^2+y^2+5y\left(-2y-1\right)-y+2=0\end{matrix}\right.\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
Lizy
Xem chi tiết
Lizy
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Lizy
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Mèo Dương
Xem chi tiết