Đơn giản thôi ..tách và áp dụng tích phân từng phần là ok.\(\int\limits^{\frac{\Pi}{2}}_0x\sin\left(2x\right)dx\) đặt \(\begin{cases}u=x\\dv=sin\left(2x\right)dx\end{cases}\) →\(\begin{cases}du=dx\\v=\int sin\left(2x\right)dx=\frac{-1}{2}cos\left(2x\right)\end{cases}\)
→T1= \(\frac{-1}{2}x\times cos\left(2x\right)\left|\frac{\frac{\Pi}{2}}{0}\right|^{ }\) -- \(\int\limits^{\frac{\Pi}{2}}_{ }\frac{-1}{2}cos\left(2x\right)dx\)= \(\frac{\Pi}{4}\) + \(\left(\frac{1}{4}sin\left(2x\right)\right)\)|thế cận vô → T1=\(\frac{\Pi}{4}\)
T2= \(\int\limits x^3dx\) = \(\frac{x^4}{4}\)|| thế cận = \(\frac{\Pi^4}{64}\) suy ra T= \(\frac{\Pi}{4}+\frac{\Pi^4}{64}\)