Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tranthuylinh

giải/hệ/phương/trình:\(\dfrac{1}{x-2}+\dfrac{5}{2y-1}=3\)

\(\dfrac{3}{x-2}-\dfrac{1}{2y-1}=1\)

Yeutoanhoc
20 tháng 5 2021 lúc 17:24

`đk:x ne 2,y ne 1/2`

ĐẶt `a=1/(x-2),b=1/(2y-1)`

`hpt<=>` $\begin{cases}a+5b=3\\3a-b=1\\\end{cases}$

`<=>` $\begin{cases}3a+15b=9\\3a-b=1\\\end{cases}$

`<=>` $\begin{cases}16b=8\\a=3-5b\\\end{cases}$

`<=>` $\begin{cases}b=\dfrac12\\a=\dfrac12\\\end{cases}$

`<=>` $\begin{cases}x-2=2\\2y-1=2\\\end{cases}$

`<=>` $\begin{cases}x=4\\y=\dfrac32\\\end{cases}$

Lê Thị Thục Hiền
20 tháng 5 2021 lúc 17:27

Đk: \(x\ne2;y\ne\dfrac{1}{2}\)

Đặt \(a=\dfrac{1}{x-2},b=\dfrac{1}{2y-1}\) (a,b khác 0)

Có hệ: \(\left\{{}\begin{matrix}a+5b=3\\3a-b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+5b=3\\15a-5b=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}16a=8\\3a-b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=3a-1=\dfrac{1}{2}\end{matrix}\right.\)(tm)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{1}{2}\\\dfrac{1}{2y-1}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3}{2}\end{matrix}\right.\)(tm)


Các câu hỏi tương tự
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
huy tạ
Xem chi tiết
Dragon ball heroes Music
Xem chi tiết
Dung Vu
Xem chi tiết
Tran Phut
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Dung Vu
Xem chi tiết