Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Anh

Giải hệ phương trình

\(\left\{{}\begin{matrix}\sqrt{x+1}+\dfrac{2y}{y+1}=2\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)

scotty
9 tháng 4 2022 lúc 15:47

Có : \(\left\{{}\begin{matrix}\sqrt{x+1}+\dfrac{2y}{y+1}=2\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}2\sqrt{x+1}+\dfrac{4y}{y+1}=4\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}2\sqrt{x+1}+\dfrac{4y}{y+1}-2\sqrt{x+1}+\dfrac{1}{y+1}=4-\dfrac{3}{2}\\2\sqrt{x+1}-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}\dfrac{4y+1}{y+1}=\dfrac{5}{2}\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{y+1}}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}2.\left(4y+1\right)=5.\left(y+1\right)\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{y+1}}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}8y+2=5y+5\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{y+1}}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}3y=3->y=1\\\sqrt{x+1}=\dfrac{\dfrac{3}{2}+\dfrac{1}{1+1}}{2}\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}y=1\\\sqrt{x+1}=1\end{matrix}\right.\)

-> \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

Vậy .........


Các câu hỏi tương tự
DŨNG
Xem chi tiết
Kiều Phương Phạm
Xem chi tiết
Rhider
Xem chi tiết
ILoveMath
Xem chi tiết
Miko
Xem chi tiết
Kim Tuyền
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết
Nott mee
Xem chi tiết
mynameisbro
Xem chi tiết