a/ giải pt: \(\sqrt{3x-2}-\sqrt{x+7}=1\)
b/ giải hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y-2}=2\\\dfrac{2}{y-2}-\dfrac{3}{x-1}=1\end{matrix}\right.\)
cho x>0. Tìm min \(P=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\)
Cho hai số thực dương x,y thỏa mãn \(x+y+1=3xy\)
Tìm GTLN của:
\(M=\dfrac{3x}{y\left(x+1\right)}+\dfrac{3y}{x\left(y+1\right)}-\dfrac{1}{x^2}-\dfrac{1}{y^2}\)
1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
cho ba số a,b,c là các số dương thoả mãn abc=1.chứng minh rằng:\(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+c+1\right)^2}+\dfrac{c}{\left(ac +c+1\right)^2}\ge\dfrac{1}{a+b+c}\)
Giả sử a , b , c là các số thực dương sao cho \(a+b+c=1\)
Chứng minh rằng \(2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)
1) CMR : \(2^{1975}+5^{2010}⋮3\)
2) CMR nếu \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1\) thì \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
3) cho a,b,c dương . CM \(\sqrt{\dfrac{2}{a}}+\sqrt{\dfrac{2}{b}}+\sqrt{\dfrac{2}{c}}\le\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{c+a}{ca}}\)
p/s : đề GIa lai nhé mik hỏi cách làm khác thui, sắp thi tỉnh oy =)
với 0<a,b,c <1/2 . thỏa mãn : a+b+c=1
tìm min của : \(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)
1. Cho a là số thực thảo mãn : 5<a<7 . Tìm min của biểu thức
\(A=\dfrac{1}{\left(a-5\right)^2}+\dfrac{1}{\left(7-a\right)^2}+\dfrac{1}{\left(a-5\right)\left(7-a\right)}\)