a) \(\left\{\begin{matrix}x^2=3x-y\left(1\right)\\y^2=3y-x\left(2\right)\end{matrix}\right.\)
Lấy (1) từ (2)\(x^2-y^2=3\left(x-y\right)+\left(x-y\right)=4\left(x-y\right)\Rightarrow\left\{\begin{matrix}x-y=0\left(4\right)\\x+y-4=0\left(5\right)\end{matrix}\right.\)
(4) thay x=y vào (1)\(\Leftrightarrow x^2=2x\Rightarrow\left\{\begin{matrix}x=0\\x=2\end{matrix}\right.\)(*)
(5) thay -y=x-4 vào(1)\(\Leftrightarrow x^2=3x+\left(x-4\right)\Leftrightarrow x^2-2x+4=0\) delta=1-4<0 vô nghiệm
Kết luận: hệ có nghiệm (x,y)=(0,0); (2,2)
b) tương tự câu (a) chú ý x^3-y^3=(x-y)(x^2+xy+y^2)