Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

giải bằng đặt ẩn phụ ạ

\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)

Nguyễn Việt Lâm
13 tháng 1 2024 lúc 22:13

Bài này giải kiểu thông thường thì ngắn chứ cưỡng ép đặt ẩn phụ thì nó ko hay, rất dài như dưới đây:

ĐKXĐ: \(xy>0\)

\(\left\{{}\begin{matrix}\dfrac{\sqrt{2}x+\sqrt{2}y}{\sqrt{xy}}=3\\x-y+xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{2\left(x+y\right)^2}{xy}}=3\\x-y+xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)^2}{xy}=9\\x-y+xy=3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x-y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left(x+y\right)^2=\left(x-y\right)^2+4xy=u^2+4v\)

Hệ trở thành:

\(\left\{{}\begin{matrix}\dfrac{2\left(u^2+4v\right)}{v}=9\\u+v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u^2+8u=9v\\u+v=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2u^2=v\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2u^2=v\\u+2u^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=2u^2\\2u^2+u-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=2\\u=-\dfrac{3}{2}\Rightarrow v=\dfrac{9}{2}\end{matrix}\right.\)

- Với \(\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=1\\xy=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-1\\xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-1\\x\left(x-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x-1\\x^2-x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-2\\x=2\Rightarrow y=1\end{matrix}\right.\)

- Với \(\left\{{}\begin{matrix}u=-\dfrac{3}{2}\\v=\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=-\dfrac{3}{2}\\xy=\dfrac{9}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x+\dfrac{3}{2}\\x\left(x+\dfrac{3}{2}\right)=\dfrac{9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x+\dfrac{3}{2}\\x^2+\dfrac{3}{2}x-\dfrac{9}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\Rightarrow y=3\\x=-3\Rightarrow y=-\dfrac{3}{2}\end{matrix}\right.\)

Tô Mì
13 tháng 1 2024 lúc 22:36

Các câu hỏi tương tự
Mymy V
Xem chi tiết
Ngọc Mai
Xem chi tiết
mynameisbro
Xem chi tiết
Miko
Xem chi tiết
ILoveMath
Xem chi tiết
Kim Tuyền
Xem chi tiết
DUTREND123456789
Xem chi tiết
ILoveMath
Xem chi tiết
Thục Quyên
Xem chi tiết