Với `x > 0,x \ne 1` có:
`(\sqrt{x}/[1-\sqrt{x}]+\sqrt{x}/[1+\sqrt{x}]):\sqrt{x}/[x-1]`
`=[-\sqrt{x}(1+\sqrt{x})+\sqrt{x}(\sqrt{x}-1)]/[(\sqrt{x}-1)(\sqrt{x}+1)].[x-1]/\sqrt{x}`
`=[-\sqrt{x}-x+x-\sqrt{x}]/[x-1].[x-1]/\sqrt{x}`
`=[-2\sqrt{x}]/\sqrt{x}=-2`
`A = ((sqrt x + x)/(1 - x) +(sqrtx -x)/(1-x)) . (x-1)/sqrt x`.
`= (2 sqrt x)/(1-x) . (x-1)/sqrt x`
`= -2`.