\(\dfrac{3x+2}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{x^2+2x+1}\)
= \(\dfrac{3x+2}{\left(x-1\right)^2}-\dfrac{6}{\left(x-1\right)\left(x+1\right)}-\dfrac{3x-2}{\left(x+1\right)^2}\)
= \(\dfrac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\dfrac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)^2}-\dfrac{\left(3x-2\right)\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}\)
= \(\dfrac{3x^3+8x^2+7x+2}{\left(x^2-1\right)^2}-\dfrac{6x^2-6}{\left(x^2-1\right)^2}-\dfrac{3x^3-8x^2+7x-2}{\left(x^2-1\right)^2}\)
= \(\dfrac{10x^2+10}{\left(x^2-1\right)^2}\)
= \(\dfrac{10\left(x^2+1\right)}{\left(x^2-1\right)^2}\)