Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Zi Heo

Rút gọn rồi tính giá trị của biểu thức tại x=1; y=2

A= \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
8 tháng 12 2021 lúc 16:32

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)


Các câu hỏi tương tự
Zi Heo
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Đặng Hồng Phong
Xem chi tiết