a) Ta có: \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)⋮5\)
b) Ta có: \(\left(4n+1\right)^2-1\)
\(=\left(4n+1-1\right)\left(4n+1+1\right)\)
\(=4n\left(4n+2\right)\)
\(=8n\left(2n+1\right)⋮8\)
a) Ta có: \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)⋮5\)
b) Ta có: \(\left(4n+1\right)^2-1\)
\(=\left(4n+1-1\right)\left(4n+1+1\right)\)
\(=4n\left(4n+2\right)\)
\(=8n\left(2n+1\right)⋮8\)
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
1)CMR: với mọi số tự nhiên n thì : A=5n+2+26.5n+82n+1
2) Với x \(\ge\) 0. Tìm GTNN của bt
a)P=\(\dfrac{\left(x+2\right)^2}{2x}\)
b)Q=\(\dfrac{\left(x+1\right)^2}{y}+\dfrac{4y}{x}\) với x>0,y>0
Dùng quy nạp nha
1. CMR: ∀n thì
a) \(A=10^n+72-1\)⋮81
b) \(B=2002^n-138n-1\)⋮207
2.CMR: ∀n∈N
a) \(1.2+2.3+3.4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{8}\)
b) \(1^3+2^3+3^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
Tính
a) \(A=1+\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
b) \(B=10^2+8^2+.....+2^2-\left(9^2+7^2+5^2+3^2+1^2\right)\)
Cho a+b+c=0 CMR
\(a^5.\left(b^2+c^2\right)+b^5.\left(c^2+a^2\right)+c^5.\left(a^2+b^2\right)=\frac{1}{2}.\left(a^3+b^3+c^3\right).\left(a^4+b^4+c^4\right)\)
1. CM: \(3\left(a^2+b^2\right)-ab+4\ge2\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\)
2. CMR: \(a^4+b^4+c^4+1\ge2a\left(ab^2-a+c+1\right)\)
3. Cm: \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a+b\right)\)
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
BT7: Tính
\(3,C=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)...\left(5^{16}+1\right)\)
\(4,D=15\left(4^2+1\right)\left(4^4+1\right)...\left(4^{64}+1\right)\)
\(5,E=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)...\left(5^{128}+1\right)+\left(5^{256}-1\right)\)