CMR : 1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)
CMR : 13+23+...+23 = \(\frac{2^2\left(2+1\right)^2}{4}\)
Tính \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
vì sao \(\frac{2}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
Cho x và y là các số dương có tổng bằng 1.
CMR: \(\left(y+\frac{1}{x}\right)^2+\left(x+\frac{1}{y}\right)^2\ge\frac{25}{2}\)
Tính B=$\frac{1}{3} \frac{1}{6}\left(1 2\right) \frac{1}{9}\left(1 2 3\right) ... \frac{1}{6045}\left(1 2 3 ... 2015\right)$13 16 (1 2) 19 (1 2 3) ... 16045 (1 2 3 ... 2015)
Tính:
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+......+\frac{1}{20}\left(1+2+3+....+20\right)\)
Tính : \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+...+20\right)\)
Tính A=\(\frac{1}{3}+\frac{1}{6}\left(1+2\right)+\frac{1}{9}\left(1+2+3\right)+...+\frac{1}{6045}\left(1+2+...+2015\right)\)