bn chắc đề đúng chứ?chổ (1/2)^99 đó,2 cái liền hả?
\(\frac{1}{2}\)+\(\frac{1^2}{2^2}\)+\(\frac{1^3}{2^3}\)+...+\(\frac{1^{98}}{2^{98}}\)+\(\frac{1^{99}}{2^{99}}\)
=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{99}}\)
=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{98}}\)-\(\frac{1}{2^{99}}\) Còn lại tự làm nhá kết quả cuối cùng là 299-1/299
Đặt S=1/2+(1/2)^2+(1/2)^3+......+(1/2)^98+(1/2)^99+(1/2)^99
S=(1/2+1/2^2+1/2^3+.....+1/2^98+1/2^99)+1/2^99
Đặt A=1/2+1/2^2+1/2^3+......+1/2^98+1/2^99
=>2A=1+1/2+1/2^2+.......+1/2^97+1/2^98
=>2A-A=(1+1/2+1/2^2+.....+1/2^97+1/2^98)-(1/2+1/2^2+1/2^3+....+1/2^98+1/2^99)
=>A=1-1/2^99
Khi đó S=1-1/2^99+1/2^99=1
Vậy..............=1