Bài 1:
a, Tính \(\dfrac{5.4^{15}.9^{9} - 4.3^{20}.8^{9}}{5.2^{9}.6^{19}-7.2^{29}.27^{6}}\)
b,Tìm x biết:
\(1\dfrac{1}{30}:(24\dfrac{1}{6}-24\dfrac{1}{5}) -\dfrac{1\dfrac{1}{2}-\dfrac{3}{4}}{4x-\dfrac{1}{2}}=(-1\dfrac{1}{15}):(8\dfrac{1}{5}-8\dfrac{1}{3})\)
Bài 2: Chứng minh số:
222...22200333...333(2001c/s 2; 2003 c/s3)
Bài 1:Chứng tỏ rằng:B=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)\(\dfrac{1}{8^2}\)<1
Bài 2:Chứng tỏ rằng:E=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+...+\(\dfrac{2499}{2500}\)<1
Bài 3:Chứng tỏ rằng:1<\(\dfrac{2011}{2020^2+1}\)+\(\dfrac{2021}{2020^2+2}\)+\(\dfrac{2021}{2020^3+3}\)+...+\(\dfrac{2021}{2020^3+2020}\)< 2
chứng minh rằng : \(\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
a, \(\dfrac{1}{3}-\dfrac{1}{4}:\dfrac{2}{5}\)
b, \(\dfrac{6}{7}-\left(\dfrac{5}{6}+\dfrac{1}{3}\right)-\left(\dfrac{2}{3}+\dfrac{1}{7}\right)\)
c, \(\dfrac{-5}{9}.\dfrac{2}{5}+4\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{-3}{5}\)
d, \(3\dfrac{1}{2}-\left(5\dfrac{4}{7}-1\dfrac{1}{2}\right):0,75\)
a)chứng minh rằng :\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)........+\(\dfrac{1}{100^2}< \dfrac{1}{2}\)
b)tính nhanh tổng S với S= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+......+\dfrac{1}{61.63}\)
các cao nhân gải giúp với ạ !!! iem đang cần gấp
Chứng minh rằng \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
\(\dfrac{1}{2}.\)\(\dfrac{3}{5}+\dfrac{4}{7}:\dfrac{4}{5}-\dfrac{1}{70}\)
\(\left(\dfrac{2}{3}+\dfrac{1}{5}-\dfrac{4}{9}\right):\left(\dfrac{1}{3}+\dfrac{2}{5}-\dfrac{6}{9}\right)\)
Bài 1. Tính
A= \(\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\)
B= \(\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\)
Bài 2. Tính
a) \(5\dfrac{1}{2}.3\dfrac{1}{4}\) b) \(6\dfrac{1}{3}:4\dfrac{2}{9}\) c) \(4\dfrac{3}{7}.2\)
cho P=\(\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+...+\dfrac{1}{201^2}+\dfrac{1}{203^2}\) chứng tỏ rằng p<\(\dfrac{1}{6}\)