Bài 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lâm Ánh Yên

Chứng minh rằng:Nếu a,b,c > 0 thì: \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b+c}{2}\)

Hồng Phúc
2 tháng 3 2021 lúc 12:42

Áp dụng BĐT BSC:

\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)

\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)

\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Ngô Thành Chung
2 tháng 3 2021 lúc 14:23

4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)

Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)

⇒ Cộng lại vế với vế :

4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)


Các câu hỏi tương tự
Thảo Vi
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
Huỳnh Ngọc
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
MONKEY.D.LUFFY
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
quangduy
Xem chi tiết
Queen Material
Xem chi tiết
quangduy
Xem chi tiết