Đề bài sai, BĐT này chỉ đúng với a;b;c dương
Đề bài sai, BĐT này chỉ đúng với a;b;c dương
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
Cho a, b, c là các số dương. Chứng minh rằng:
\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ca}{c+a+2b}\le\dfrac{a+b+c}{4}\)
Cho $a,b,c$ dương thỏa $a+b+c=6$
Chứng minh rằng \(\dfrac{ab}{6+2b+c}+\dfrac{bc}{6+2c+a}+\dfrac{ac}{6+2a+b}\le1\)
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)
Cho a, b, c > 0 . CMR :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
Bài 5: cho a,b,c lớn hơn 0
chứng minh rẳng:
\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+2a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)
Cho các số thực dương a,b,c.Chứng minh rằng :
\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}\le\dfrac{3}{2}\)
Cho a; b; c là các số dương. Tìm GTLN của
\(A=\dfrac{\sqrt{ab}}{a+b+2c}+\dfrac{\sqrt{bc}}{b+c+2a}+\dfrac{\sqrt{ac}}{a+c+2b}\)
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)