Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NinhTuấnMinh

Bài 5: cho a,b,c lớn hơn 0 
chứng minh rẳng:

\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+2a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)

黃旭熙.
11 tháng 9 2021 lúc 23:18

\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+1a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)

\(\Leftrightarrow2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2c}\right)\ge1+\dfrac{b+2a}{b+2a}+\dfrac{c+2b}{c+2b}+\dfrac{a+2c}{a+2c}=1+1+1+1=4\)Thật vậy:

\(\dfrac{a}{b+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2b}+\dfrac{c}{a+2c}=a\left(\dfrac{1}{b+2c}+\dfrac{1}{b+2a}\right)+b\left(\dfrac{1}{c+2a}+\dfrac{1}{c+2b}\right)+c\left(\dfrac{1}{a+2b}+\dfrac{1}{a+2c}\right)\)

\(\ge\dfrac{4a}{2\left(a+b+c\right)}+\dfrac{4b}{2\left(a+b+c\right)}+\dfrac{4c}{2\left(a+b+c\right)}=2\)

\(\Rightarrow VT\ge2.2=4\)

\(\RightarrowĐPCM\)


Các câu hỏi tương tự
hiền nguyễn
Xem chi tiết
ILoveMath
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
Hoàn Minh
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết