Ta dùng cách chứng minh ngược :
Nếu \(a=b=c\) thì \(a^3=b^3=c^3=abc\)
\(\Rightarrow a^3+a^3+a^3=abc+abc+abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Ta dùng cách chứng minh ngược :
Nếu \(a=b=c\) thì \(a^3=b^3=c^3=abc\)
\(\Rightarrow a^3+a^3+a^3=abc+abc+abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Chứng minh rằng nếu a3 +b3+c3 =3abc thì a+b+c =0 hoặc a = b= c
Cho a, b, c > 0 . Chứng minh rằng a3 +b3 +c3 >=3abc.
Cho a + b + c = 0. Chứng minh rằng a 3 + b 3 + c 3 = 3abc.
Cho a + b + c = 0. Chứng minh a 3 + b 3 + c 3 = 3 a b c
Biết a + b + c = 0. Chứng minh a 3 + b 3 + c 3 = 3 a b c .
Cho a + b + c = 0. Chứng minh a3 + b3 + c3 = 3abc.
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
Cho G=a3+b3+c3-3abc với a, b, c là độ dài 3 cạnh △ABC. Nếu G=0 thì △ABC là tam giác gì?