Ta có :8!-38308=12
Vậy f(x)=x-38308
Thay x =9!, ta có f(9!)=362880-38308=324572 khác 2072
Vậy đa thức f(x) không tồn tại
Ta có :8!-38308=12
Vậy f(x)=x-38308
Thay x =9!, ta có f(9!)=362880-38308=324572 khác 2072
Vậy đa thức f(x) không tồn tại
Chứng minh rằng không tồn tại đa thức f(x) có các hệ số nguyên mà f(8!) = 2012 và f(9!) = 2072
Cho đa thức f(x) = ax2 + bx + c. Trong đó a,b,c là các hệ số nguyên. Biết rằng f(x) chia hết cho 3 với mọi \(x\in Z\). Chứng minh rằng a, b, c chia hết cho 3.
Cho đa thức f(x) = ax2 +bx + c. Trong đó a, b, c là các hệ số nguyên. Biết rằng f(x) chia hết cho 3 với mọi \(x\in Z\). Chứng minh a,b,c chia hết cho 3
Chứng minh rằng : Nếu đa thức f(x)=ax + b có hai nghiệm x1 và x2 khác nhau thi f(x) là đa thức 0
Cho hàm số đa thức bậc ba y = f (x) có đồ thị đi qua các điểm A(2;4), B(3;9), C(4;16). Các đường thẳng AB, AC, BC lại cắt đồ thị tại lần lượt tại các điểm D, E, F (D khác A và B, E khác A và C, F khác B và C). Biết rằng tổng các hoành độ của D, E, F bằng 24. Tính f(0)
A. π 4
B. 0
C. 24 5
D. 2
Cho hàm số đa thức bậc ba y = f(x) có đồ thị đi qua các điểm A 2 ; 4 , B 3 ; 9 , C 4 ; 16 . Các đường thẳng AB, AC, BC lại cắt đồ thị tại lần lượt tại các điểm D, E, F (D khác A và B; E khác A và C; F khác B và C). Biết rằng tổng các hoành độ của D, E, F bằng 24. Tính f 0
A. -2
B. 0
C. 24 5
D. 2
Cho \(f\left(x\right)\) là một đa thức bậc 4. Biết \(f\left(x\right)=f\left(-x\right)\) với mọi \(x\in R\), chứng minh rằng cac hệ số của lũy thừa lẻ đều bằng 0.
Cho hàm số đa thức bậc ba y=f(x) có đồ thị của các hàm số y=f(x), y=f '(x)như hình vẽ bên.Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình f(f(x)-m)+2f(x)=3(x+m) có đúng 3 nghiệm thực .Tổng các phần tử của S bằng
A. 0
B. -6
C. -7
D. -5
Cho \(f\left(x\right)\) là một đa thức bậc hai. Biết \(f\left(5\right)=f\left(-5\right)\), chứng minh rằng \(f\left(x\right)=f\left(-x\right)\) với mọi \(x\in R\).
(Toán 7)