Ta có
Quan sát đồ thị có
Đặt phương trình trở thành:
Khi đó
Phương trình này có 3 nghiệm phân biệt
Tổng các phần tử củaS bằng
Chọn đáp án C.
Ta có
Quan sát đồ thị có
Đặt phương trình trở thành:
Khi đó
Phương trình này có 3 nghiệm phân biệt
Tổng các phần tử củaS bằng
Chọn đáp án C.
Cho đồ thị của hàm số y=f(x) như hình vẽ bên.Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = f x + 2018 + 1 3 m 2 có 5 điểm cực trị. Tổng tất cả các giá trị của các phần tử của S bằng
A. 7.
B. 6.
C. 5.
D. 9.
Hình vẽ bên là đồ thị của hàm số y = f(x). Gọi S là tập hợp các số nguyên dương của tham số m để hàm số y = |f(x – 1) + m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Gọi S là tập hợp tất cả các số nguyên m để phương trình f(sinx)=3sinx+m có nghiệm thuộc khoảng 0 ; π Tổng các phần tử của S bằng
A. -5
B. -8
C. -6
D. -10
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(f(sinx))=m có nghiệm thuộc khoảng 0 ; π là
A. [-1;3)
B. (-1;1)
C. (-1;3]
D. [-1;1)
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên không âm của tham số m để hàm số y=|f(x-2019)+m-2| có 5 điểm cực trị. Số các phần tử của S bằng
A. 3
B. 4
C. 2
D. 5
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình f (sinx) = m có nghiệm thuộc khoảng (0; π ) là
A. [-1;3)
B. (-1;1)
C. (-1;3)
D. [-1;1 )
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sinx)=m có nghiệm thuộc khoảng 0 ; π là
A. (-1;3)
B. (-1;1)
C. (-1;3)
D. (-1;1)
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f ( x ) + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tính tổng T = a + b.
A. T = 2
B. T = 1
C. T = -1
D. T = -2